晶体管-晶体管优质

编辑:周舟 | 时间:2021-07-28 00:02:29
来源:互联网
正文
编辑推荐

什么是晶体管?

1946年1月,贝尔(Bell)实验室成立了固体物理研究小组及冶金研究小组,并设计出了第一个晶体管,即在一个楔形的绝缘体上蒸金,然后用刀片把楔尖上的金划开一条小缝,并将该楔形体与锗片接触,在锗片表面形成间距很小的两个接触点。这两个接触点分别作为发射极和集电极,衬底作为基极。经过无数次实验,终于在1947年12月23日首次观察到了该晶体管的放大特性。从此,世界上第一个晶体管诞生了,拉开了人类社会步入信息时代的序幕。

什么是晶体管?

分享西门子S7-200晶体管输出型PLC的输出点如何测量!

晶体管的作用是什么??

晶体管的作用是什么??

作用为: 1.二极管可以作为单向的开关使用 2.三极管则可以用过电流的放大 3.通过三极管的拼接 也可以进行逻辑的运算 4.使用的芯片都是通过晶体管的拼接而组成的数字或者模拟电路 晶体管内部的工作原理很简单,对基极PS2707-1与发射极之间流过的电流进行不断地监视,并控制集电极发射极间电流源使基极一发射极间电流的数十至数百倍(依晶体管的种类而异)的电流流在集电极与发射极之间。就是说,晶体管是用基极电流来控制集电极一发射极电流的器件。 从外部来看,因为在基极输入的电流被变大而出现在集电极、发射极端上,所以可看成将输入信号进行了放大。 在实际的晶体管虽然有数千个品种,然而只是在最大规格、电特性和外形等方面有所不同。 晶体管是将基极与发射极间流动的电流检测出来,进而控制集电极一发射极间电流的器件,所以只要使电流在基极与发射极之间流动,它就工作。也就是说,设计一种外部电路使基极一发射极间电流流动就可以了。 扩展资料: 晶体管的低成本、灵活性和可靠性使得其成为非机械任务的通用器件,例如数字计算。在控制电器和机械方面,晶体管电路也正在取代电机设备,因为它通常是更便宜、更有效地,仅仅使用标准集成电路并编写计算机程序来完成同样的机械任务,使用电子控制,而不是设计一个等效的机械控制。 因为晶体管的低成本和后来的电子计算机、数字化信息的浪潮来到了。由于计算机提供快速的查找、分类和处理数字信息的能力,在信息数字化方面投入了越来越多的精力。今天的许多媒体是通过电子形式发布的,最终通过计算机转化和呈现为模拟形式。受到数字化革命影响的领域包括电视、广播和报纸。 频率特性 晶体管频率特性参数,常用的有以下2个: (1)特征频率ft:它是指在测试频率足够高时,使晶体管共发射极电流放大系数时的频率。 (2)截止频率fb: 在置换晶体管时,主要考虑ft与fb。通常要求用于置换的晶体管,其ft与fb,应不小于原晶体管对应的ft与fb。 其他参数 除以上主要参数外,对于一些特殊的晶体管,在置换时还应考虑以下参数: (1)对于低噪声晶体管,在置换时应当用噪声系数较小或相等的晶体管。 (2)对于具有自动增益控制性能的晶体管,在置换时应当用自动增益控制特性相同的晶体管。 (3)对于开关管,在置换时还要考虑其开关参数。 参考资料:百度百科——晶体管

什么是晶体管?

晶体管(transistor)是一种固体半导体器件,具有检波、整流、放大、开关、稳压、信号调制等多种功能。晶体管作为一种可变电流开关,能够基于输入电压控制输出电流。与普通机械开关(如Relay、switch)不同,晶体管利用电讯号来控制自身的开合,而且开关速度可以非常快,实验室中的切换速度可达100GHz以上。 2016年,劳伦斯伯克利国家实验室的一个团队打破了物理极限,将现有的最精尖的晶体管制程从14nm缩减到了1nm,完成了计算技术界的一大突破。[


什么是晶体管?

晶体管是由半导体材料制成的?常见的半导体有硅和锗,它们不同于铜?铁等电子能自由活动的导体,也不同于橡胶等电子被禁锢的绝缘体,而是一种具有特殊导电能力的物体?由半导体做成的晶体管,只有一只小鞭炮那么大?与电子管相比,晶体管的体积只有它的几十分之一或更小,而且耗电量很小,使用寿命比电子管还要长100倍? 晶体管

gto晶体管有哪些参数,哪些参数与晶体管相同?哪些不同?

GTO是门机关断晶闸管,是在晶闸管的基础发展来的。 相同点:都是流控器件、都需要持继的控制电流才能持继导通。 不同点:1 GTO的一控制导通后只要门极电流大于维持电流GTO就维持导通并且输出电流的大小是不可控的,而功率晶体管则可以。 2 GTO需要关断电流才能关断,而功率晶体管则一般只需关掉基极电流就可以 3 因为GTO导通后需要擎住电流,且门极电流大、GTO的最大额定电压电流比功率晶体管大、GTO比功率晶体管的开关速度6-30倍。


晶体管有哪些作用?

晶体管,是由N型半导体和P型半导体够成,电流在其中的传播主要是靠多数载流子传播的;对于N型半导体:多数载流子是电子,而对与P型半导体,多数载流子是空穴(正电荷).门电路,是这样一种电路:它规定各个输入信号之间满足某种逻辑关系时,才有信号输出.与非门,或非门又分为CMOS和TTL两种,不过功能是一样的,只是电路组成不同罢了.与非门:举个例子,输入端输入1,0两个信号,与是乘的意思,1*0=0(在数子电路中,1+1=1)然后取反,1的反是0,即输出低电平0.或非门是信号相加然后取反,1+0=1 1+1=1 0+0=0,然后取反


三极管 或者是晶体管都有哪些规格

不是吧,兄弟,你的问题还真是真是多,你可以工程师的网站,如果21IC之类的查看一下啊,如果具体在哪一个型号的参数之类的,你就可以向天亿电子他们要资料,他们做这个比较专业一点。


晶体管有哪些特性?

一、晶体管的种类 晶体管有多种分类方法。 (一)按半导体材料和极性分类 按晶体管使用的半导体材料可分为硅材料晶体管和锗材料晶体管管。按晶体管的极性可分为锗NPN型晶体管、锗PNP晶体管、硅NPN型晶体管和硅PNP型晶体管。 (二)按结构及制造工艺分类 晶体管按其结构及制造工艺可分为扩散型晶体管、合金型晶体管和平面型晶体管。 (三)按电流容量分类 晶体管按电流容量可分为小功率晶体管、中功率晶体管和大功率晶体管。 (四)按工作频率分类 晶体管按工作频率可分为低频晶体管、高频晶体管和超高频晶体管等。 (五)按封装结构分类 晶体管按封装结构可分为金属封装(简称金封)晶体管、塑料封装(简称塑封)晶体管、玻璃壳封装(简称玻封)晶体管、表面封装(片状)晶体管和陶瓷封装晶体管等。其封装外形多种多样。 (六)按功能和用途分类 晶体管按功能和用途可分为低噪声放大晶体管、中高频放大晶体管、低频放大晶体管、开关晶体管、达林顿晶体管、高反压晶体管、带阻晶体管、带阻尼晶体管、微波晶体管、光敏晶体管和磁敏晶体管等多种类型。 二、晶体管的主要参数 晶体管的主要参数有电流放大系数、耗散功率、频率特性、集电极最大电流、最大反向电压、反向电流等。 (一)电流放大系数 电流放大系数也称电流放大倍数,用来表示晶体管放大能力。 根据晶体管工作状态的不同,电流放大系数又分为直流电流放大系数和交流电流放大系数。 1.直流电流放大系数 直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。 2.交流电流放大系数 交流电流放大系数也称动态电流放大系数或交流放大倍数,是指在交流状态下,晶体管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。 hFE或β既有区别又关系密切,两个参数值在低频时较接近,在高频时有一些差异。 (二)耗散功率 耗散功率也称集电极最大允许耗散功率PCM,是指晶体管参数变化不超过规定允许值时的最大集电极耗散功率。 耗散功率与晶体管的最高允许结温和集电极最大电流有密切关系。晶体管在使用时,其实际功耗不允许超过PCM值,否则会造成晶体管因过载而损坏。 通常将耗散功率PCM小于1W的晶体管称为小功率晶体管,PCM等于或大于1W、小于5W的晶体管被称为中功率晶体管,将PCM等于或大于5W的晶体管称为大功率晶体管。 (三)频率特性 晶体管的电流放大系数与工作频率有关。若晶体管超过了其工作频率范围,则会出现放大能力减弱甚至失去放大作用。 晶体管的频率特性参数主要包括特征频率fT和最高振荡频率fM等。 1.特征频率fT 晶体管的工作频率超过截止频率fβ或fα时,其电流放大系数β值将随着频率的升高而下降。特征频率是指β值降为1时晶体管的工作频率。 通常将特征频率fT小于或等于3MHZ的晶体管称为低频管,将fT大于或等于30MHZ的晶体管称为高频管,将fT大于3MHZ、小于30MHZ的晶体管称为中频管。 2.最高振荡频率fM 最高振荡频率是指晶体管的功率增益降为1时所对应的频率。 通常,高频晶体管的最高振荡频率低于共基极截止频率fα,而特征频率fT则高于共基极截止频率fα、低于共集电极截止频率fβ。 (四)集电极最大电流ICM 集电极最大电流是指晶体管集电极所允许通过的最大电流。当晶体管的集电极电流IC超过ICM时,晶体管的β值等参数将发生明显变化,影响其正常工作,甚至还会损坏。 (五)最大反向电压 最大反向电压是指晶体管在工作时所允许施加的最高工作电压。它包括集电极—发射极反向击穿电压、集电极—基极反向击穿电压和发射极—基极反向击穿电压。 1.集电极—发射极反向击穿电压 该电压是指当晶体管基极开路时,其集电极与发射极之间的最大允许反向电压,一般用VCEO或BVCEO表示。 2.集电极—基极反向击穿电压 该电压是指当晶体管发射极开路时,其集电极与基极之间的最大允许反向电压,用VCBO或BVCBO表示。 3.发射极—基极反向击穿电压 该电压是指当晶体管的集电极开路时,其发射极与基极与之间的最大允许反向电压,用VEBO或BVEBO表示。 (六)反向电流 晶体管的反向电流包括其集电极—基极之间的反向电流ICBO和集电极—发射极之间的反向击穿电流ICEO。 1.集电极—基极之间的反向电流ICBO ICBO也称集电结反向漏电电流,是指当晶体管的发射极开路时,集电极与基极之间的反向电流。ICBO对温度较敏感,该值越小,说明晶体管的温度特性越好。 2.集电极—发射极之间的反向击穿电流ICEO ICEO是指当晶体管的基极开路时,其集电极与发射极之间的反向漏电电流,也称穿透电流。此电流值越小,说明晶体管的性能越好。


常用的晶体管整流电路有哪些

常用晶体管整流电路有:单相半波、单相全波、单相桥式、三相半波和桥式等五种整流电路。较特殊的还有倍压整流和可控整流等电路。


什么是晶体管?

分享西门子S7-200晶体管输出型PLC的输出点如何测量!

晶体管是什么?一个晶体管有多大?

晶体管就是一种固体半导体器件,包括有二极管、三极管、场效应管、晶闸管等等,有时候特指双极型器件,它的功能是可以检波、整流、放大、开关、稳压、信号调制等等。晶体管通俗说就是可变电流的开关,它能够基于输入电压来控制输出的电流,它和普通的机械开关可不同,晶体管是利用电信号来控制开关的,开关的速度非常快。而CPU中的晶体管都是纳米级别的。 晶体管是泛指一切以半导体材料为基础的单一元件,晶体管大多数指的是晶体三极管,晶体管有三个电极,所以也就有三种使用方式,发射极接地、基极接地和集电极接地。晶体管就是一种半导体器件,放大器或者电控开关,晶体管是规范操作电脑,手机和所有其他现代电子电路的基本构建块。它响应的速度很快,准确性也高,晶体管可用在各种各样的数字和模拟功能上,包括放大,开关,稳压,信号调制和振荡器,也可以独立包装或者在一个非常小的的区域里,可以容纳一亿或更多的晶体管集成电路的一部分。 晶体管的发明,可以追溯到1929年,当时工程师利莲费尔德就已经取得一种晶体管的专利了。但是,当时的技术水平还不够,制造这种器件的材料也远远达不到足够的纯度,所以这种晶体管就无法制造出来,后来美国贝尔实验室研制出了锗晶体管。晶体管的问世,是20世纪的一项重大发明,晶体管出现以后,人们就可以用一个小巧的、消耗功率低一点的电子器件,来代替体积大、功率消耗大的电子管了。20世纪上半期,在无线电爱好者中广泛流行的矿石收音机,就是采用矿石这种半导体材料进行检波的。

什么叫晶体管?

晶体管(transistor)是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。 严格意义上讲,晶体管泛指一切以半导体材料为基础的单一元件,包括各种半导体材料制成的二极管、三极管、场效应管、可控硅等,不过从国内的习惯上讲,晶体管有时多指晶体三极管,中国脱离电子管的时代不长,在1970S后至1980S早期,当时习惯以晶体管特指晶体三极管,语境的歧义就是那时留下的。 晶体管,半导体三极管,是内部含有两个PN结,外部通常为三个引出电极的半导体器件。它对电信号有放大和开关等作用,应用十分广泛。 按半导体材料和极性分类   按晶体管使用的半导体材料可分为硅材料晶体管和锗材料晶体管。按晶体管的极性可分为锗NPN型晶体管、锗PNP晶体管、硅NPN型晶体管和硅PNP型晶体管。 按结构及制造工艺分类   晶体管按其结构及制造工艺可分为扩散型晶体管、合金型晶体管和平面型晶体管。 按电流容量分类   晶体管按电流容量可分为小功率晶体管、中功率晶体管和大功率晶体管。 按工作频率分类   晶体管按工作频率可分为低频晶体管、高频晶体管和超高频晶体管等。 按封装结构分类   晶体管按封装结构可分为金属封装(简称金封)晶体管、塑料封装(简称塑封)晶体管、玻璃壳封装(简称玻封)晶体管、表面封装(片状)晶体管和陶瓷封装晶体管等。其封装外形多种多样。 按功能和用途分类   晶体管按功能和用途可分为低噪声放大晶体管、中高频放大晶体管、低频放大晶体管、开关晶体管、达林顿晶体管、高反压晶体管、带阻晶体管、带阻尼晶体管、微波晶体管、光敏晶体管和磁敏晶体管等多种类型。


晶体管是什么???

什么是晶体管及其种类与参数?
晶体管是半导体三极管中应用最广泛的器件之一,在电路中用“V”或“VT”(旧文字符号为“Q”、“GB”等)表示。
晶体管是内部含有两个PN结,外部通常为三个引出电极的半导体器件。它对电信号有放大和开关等作用,应用十分广泛。
一、晶体管的种类
晶体管有多种分类方法。
(一)按半导体材料和极性分类

按晶体管使用的半导体材料可分为硅材料晶体管和锗材料晶体管管。按晶体管的极性可分为锗NPN型晶体管、锗PNP晶体管、硅NPN型晶体管和硅PNP型晶体管。
(二)按结构及制造工艺分类
晶体管按其结构及制造工艺可分为扩散型晶体管、合金型晶体管和平面型晶体管。
(三)按电流容量分类

晶体管按电流容量可分为小功率晶体管、中功率晶体管和大功率晶体管。
(四)按工作频率分类
晶体管按工作频率可分为低频晶体管、高频晶体管和超高频晶体管等。
(五)按封装结构分类
晶体管按封装结构可分为金属封装(简称金封)晶体管、塑料封装(简称塑封)晶体管、玻璃壳封装(简称玻封)晶体管、表面封装(片状)晶体管和陶瓷封装晶体管等。其封装外形多种多样。
(六)按功能和用途分类
晶体管按功能和用途可分为低噪声放大晶体管、中高频放大晶体管、低频放大晶体管、开关晶体管、达林顿晶体管、高反压晶体管、带阻晶体管、带阻尼晶体管、微波晶体管、光敏晶体管和磁敏晶体管等多种类型。
二、晶体管的主要参数
晶体管的主要参数有电流放大系数、耗散功率、频率特性、集电极最大电流、最大反向电压、反向电流等。
(一)电流放大系数
电流放大系数也称电流放大倍数,用来表示晶体管放大能力。
根据晶体管工作状态的不同,电流放大系数又分为直流电流放大系数和交流电流放大系数。
1.直流电流放大系数 直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。
2.交流电流放大系数 交流电流放大系数也称动态电流放大系数或交流放大倍数,是指在交流状态下,晶体管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。
hFE或β既有区别又关系密切,两个参数值在低频时较接近,在高频时有一些差异。
(二)耗散功率
耗散功率也称集电极最大允许耗散功率PCM,是指晶体管参数变化不超过规定允许值时的最大集电极耗散功率。
耗散功率与晶体管的最高允许结温和集电极最大电流有密切关系。晶体管在使用时,其实际功耗不允许超过PCM值,否则会造成晶体管因过载而损坏。
通常将耗散功率PCM小于1W的晶体管称为小功率晶体管,PCM等于或大于1W、小于5W的晶体管被称为中功率晶体管,将PCM等于或大于5W的晶体管称为大功率晶体管。
(三)频率特性
晶体管的电流放大系数与工作频率有关。若晶体管超过了其工作频率范围,则会出现放大能力减弱甚至失去放大作用。
晶体管的频率特性参数主要包括特征频率fT和最高振荡频率fM等。
1.特征频率fT 晶体管的工作频率超过截止频率fβ或fα时,其电流放大系数β值将随着频率的升高而下降。特征频率是指β值降为1时晶体管的工作频率。
通常将特征频率fT小于或等于3MHZ的晶体管称为低频管,将fT大于或等于30MHZ的晶体管称为高频管,将fT大于3MHZ、小于30MHZ的晶体管称为中频管。
2.最高振荡频率fM 最高振荡频率是指晶体管的功率增益降为1时所对应的频率。
通常,高频晶体管的最高振荡频率低于共基极截止频率fα,而特征频率fT则高于共基极截止频率fα、低于共集电极截止频率fβ。
(四)集电极最大电流ICM
集电极最大电流是指晶体管集电极所允许通过的最大电流。当晶体管的集电极电流IC超过ICM时,晶体管的β值等参数将发生明显变化,影响其正常工作,甚至还会损坏。
(五)最大反向电压
最大反向电压是指晶体管在工作时所允许施加的最高工作电压。它包括集电极—发射极反向击穿电压、集电极—基极反向击穿电压和发射极—基极反向击穿电压。
1.集电极—发射极反向击穿电压 该电压是指当晶体管基极开路时,其集电极与发射极之间的最大允许反向电压,一般用VCEO或BVCEO表示。
2.集电极—基极反向击穿电压 该电压是指当晶体管发射极开路时,其集电极与基极之间的最大允许反向电压,用VCBO或BVCBO表示。
3.发射极—基极反向击穿电压 该电压是指当晶体管的集电极开路时,其发射极与基极与之间的最大允许反向电压,用VEBO或BVEBO表示。
(六)反向电流
晶体管的反向电流包括其集电极—基极之间的反向电流ICBO和集电极—发射极之间的反向击穿电流ICEO。
1.集电极—基极之间的反向电流ICBO ICBO也称集电结反向漏电电流,是指当晶体管的发射极开路时,集电极与基极之间的反向电流。ICBO对温度较敏感,该值越小,说明晶体管的温度特性越好。
2.集电极—发射极之间的反向击穿电流ICEO ICEO是指当晶体管的基极开路时,其集电极与发射极之间的反向漏电电流,也称穿透电流。此电流值越小,说明晶体管的性能越好。


在数字电路中,晶体管的作用是什么?

二极管、 三极管都可以叫做晶体管,
二极管具有单向导电特性,可以作为单向的开关使用,主要用途有:整流、检波、电位偏移,稳压二极管还可以稳压,在数字电路中还可用作与门。
而三极管则可以用过电流的放大,主要用与信号放大。


晶体管的作用及特点是什么?简单一点,通俗易懂

电子管就是一个特殊的灯泡,不过除灯丝以外,还有几个“极”,里面的灯丝与极都有连线与各自的管脚相连。最简单的电子管是二极管,它有两个极(阴极和阳极,有的灯丝还兼作阴极),阴极有发射电子的作用,阳极有接收电子的作用,并有单向导电的特性,可用作整流和检波。增加一个栅极就成了三极管,栅极能控制电流,栅极上很小的电流变化,能引起阳极很大的电流变化,所以,三极管有放大作用。当然还有多极管,它是在三极管内增加了一个或几个网栅(称为控制栅),主要是增加控制作用。晶体管是一种半导体器件,晶体二极管有负极和正极(相当于电子二极管的阴极和阳极),作用与电子管三极管相同;晶体三极管有三个极:集电极、基极、发射极(分别对应于电子管的阳极、栅极和阴极),主要用于放大电路和开关电路。晶体管的体积已比电子管缩小了许多许多,当年用电子管做的有几间屋子大的计算机,用晶体管已缩小为几个机柜了。集成电路是把由晶体管、电阻、电容等等器件组成的电路做到一个模块内,称为集成块。随着科技的发展,集成块的体积越来越小,包含的电路越来越多。所以计算机又由几个机柜的大小,缩小成一个机箱或“笔记本”,甚至更小,而且,功能还扩大了许多许多。现在由于集成电路的发明之后,晶体管已经失去了它的用武之地。由于集成电路体积小、功耗小、更强大的功能,似的晶体管慢慢退出历史舞台。但是有些怀旧的人,还是很怀念晶体管的。比如一些功放玩家(音响功率放大器等),还在收藏晶体管(主要是发光晶体管)组合的功率放大器。


晶体管的作用是什么;什么是晶体管放大器,

是指利用晶体三极管和一些阻容器件按照需要组成一个起到放大作用的电路,即放大器。


薄膜晶体管的作用是什么?

薄膜晶体管简称TFT器件,也称TFT开关管,它是基于场效应管的原理制作而成的,也就是说,TFT器件是一种利用电场效应来控制电流的管子。因为参与导电的只有一种极性的载流子,所以,TFT器件是一种单极性器件。TFT器件也有3个电极,即源极S(相当于三极管的E极)、栅极G(相当于三极管的B极)和漏极D(相当于三极管的C极)。但二者的控制特性却截然不同,三极管是电流控制器件,通过控制基极电流达到控制集电极电流或发射极电流的目的,即需要信号源提供一定的电流才能工作,因此,它的输入电阻较低;TFT器件则是电压控制器件,它的输出电流决定于输入电压的大小,基本上不需要信号源提供电流,所以,它的输入阻抗很高。此外,TFT器件还具有开关速度快、高频特性好、热稳定性好、噪声小等优点。

晶体管的特性是什么?

场效bai应管是利用栅极电场的作用来工作du的;是一种载流子——多数zhi载流子工作的器件;在电流的dao主要通路(沟道)上不存在pn结;输入电阻接近无穷大;输入端不需要电流驱动,只需要电压即可,即是电压驱动的器件,输入回路简单等。双极型晶体管管是利用pn结注入载流子来工作的;是两种载流子参与工作的器件;是由两个背靠背连接的pn结构成的;输入电阻很小;输入端需要有电流才能工作,是电流驱动的器件等。

晶体管有什么特点?

尽管最初的晶体管原始且笨拙,但它在当时却是一个举世震惊的突破。晶体管的发明,终于使体积大、耗能多、易碎的真空管有了替代物。同真空管相同的是,晶体管能放大微弱的电子信号;不同的是它廉价、耐久、耗能少,而且在科技高速发展的今天它几乎能够被制成无限小。 1999年9月,法国原子能委员会的科学家研制出当今世界上最小的晶体管,这种晶体管直径仅为20纳米。如果将这种晶体管放进一片普通集成电路中,就好像一根头发丝被放在足球场的中央一样。 如今,小小的晶体管正在我们生活中的各个领域发挥着它不可忽视的作用。

三极管具有什么特性

三极管的特性: 1、发射区向基区发射电子 电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。 2、基区中电子的扩散与复合 电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流Ic。也有很小一部分电子(因为基区很薄)与基区的空穴复合,扩散的电子流与复合电子流之比例决定了三极管的放大能力。 3、集电区收集电子 由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。 另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。 扩展资料: 产品作用: 晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。 ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。 晶体管被认为是现代历史中最伟大的发明之一,在重要性方面可以与印刷术,汽车和电话等的发明相提并论。 晶体管实际上是所有现代电器的关键活动(active)元件。晶体管在当今社会的重要性主要是因为晶体管可以使用高度自动化的过程进行大规模生产的能力,因而可以不可思议地达到极低的单位成本。 特别是晶体管在军事计划和宇宙航行中的威力日益显露出来以后,为争夺电子领域的优势地位,世界各国展开了激烈的竞争。为实现电子设备的小型化,人们不惜成本,纷纷给电子工业以巨大的财政资助。 参考资料来源:百度百科——三极管

晶体管的结构及性能特点有哪些?

晶体管的两个pn结分别称为集电结(c、b极之间)和发射结(b、e极之间),发射结与集电结之间为基区。 根据结构不同,晶体管可分为pnp型和npn型两类。在电路图形符号上可以看出两种类型晶体管的发射极箭头(代表集电极电流的方向)不同。pnp型晶体管的发射极箭头朝内,npn型晶体管的发射极箭头朝外。 2.三极管各个电极的作用及电流分配晶体管三个电极的电极的作用如下: 发射极(e极)用来发射电子; 基极(b极)用来控制e极发射电子的数量; 集电极(c极)用业收集电子。 晶体管的发射极电流ie与基极电流ib、集电极电流ic之间的关系如下:ie=ib+ic 3.晶体管的工作条件晶体管属于电流控制型半导体器件,其放大特性主要是指电流放大能力。所谓放大,是指当晶体管的基极电流发生变化时,其集电极电流将发生更大的变化或在晶体管具备了工作条件后,若从基极加入一个较小的信号,则其集电极将会输出一个较大的信号。 晶体管的基本工作条件是发射结(b、e极之间)要加上较低的正向电压(即正向偏置电压),集电结(b、c极之间)要加上较高的反向电压(即反向偏置电压)。 晶体管发射结的正向偏置电压约等于pn结电压,即硅管为0.6~0.7v,锗管为0.2~0.3v。集电结的反向偏置电压视具体型号而定。 4.晶体管的工作状态晶体管有截止、导通和饱和三种状态。 在晶体管不具备工作条件时,它处截止状态,内阻很大,各极电流几乎为0。 当晶体管的发射结加下合适的正向偏置电压、集电结加上反向偏置电压时,晶体管导通,其内阻变小,各电极均有工作电流产生(ie=ib+ic)。适当增大其发射结的正向偏置电压、使基极电流ib增大时,集电极电流ic和发射极电流ie也会随之增大。 当晶体管发射结的正向偏置电压增大至一定值(硅管等于或略高于0.7v,锗管等于或略高于0.3v0时,晶体管将从导通放大状态进入饱和状态,此时集电极电流ic将处于较大的恒定状态,且已不受基极电流ib控制。晶体管的导通内阻很小(相当于开关被接通),集电极与发射极之间的电压低于发射结电压,集电结也由反偏状态变为正偏状态。 (二)高频晶体管 高频晶体管(指特征频率大于30mhz的晶体管)可分为高频小功率晶体管和高频大功率晶体管。 常用的国产高频小功率晶体管有3ag1~3ag4、3ag11~3ag14、3cg3、3cg14、3cg21、3cg9012、3cg9015、3dg6、3dg8、3dg12、3dg130、3dg9011、3dg9013、3dg9014、3dg9043等型号,部分国产高频小功率晶体管的主要参数。 常用的进口高频小功率晶体管有2n5551、2n5401、bc148、bc158、bc328、bc548、bc558、9011~9015、s9011~s9015、tec9011~tec9015、2sa1015、2sc1815、2sa562、2sc1959、2sa673、2sc1213等型号。2.高频中、大功率晶体管高频中、大功率晶体管一般用于视频放大电路、前置放大电路、互补驱动电路、高压开关电路及行推动等电路。 常用的国产高频中、大功率晶体管有3dg41a~3dg41g、3dg83a~3dg83e、3da87a~3da87e、3da88a~3da88e、3da93a~3da93d、3da151a~3dg151d、3da1~3da5、3da100~3da108、3da14a~3da14d、3da30a~3da30d、3dg152a~3dg152j、3ca1~3ca9等型号。表5-3是各管的主要参数。 常用的进口高频中、大功率晶体管有2sa634、2sa636、2sa648a、2sa670、2sb940、2sb734、2sc2068、2sc2258、2sc2371、2sd1266a、2sd966、2sd8829、s8050、s8550、bd135、bd136等型号。 (三)超高频晶体管 超高频晶体管也称微波晶体管,其频率特性一般高于500mhz,主要用于电视、雷达、导航、通信等领域中处理微波波段(300mhz以上的频率)的信号。 1.国产超高频晶体管常用的国产超高频晶体管有3ag95、3cg15a~3cg15d、3dg56(2g210)、3dg80(2g211、2g910)、3dg18a~3dg18c、2g711a~2g711e、3dg103、3dg112、3dg145~3dg156、3dg122、3dg123、3dg130~3dg132、3dg140~3dg148、3cg102、3cg113、3cg114、3cg122、3cg132、3cg140、3da89、3da819~3da823等型号。2.进口超高频晶体管常用的进口超高频晶体管有2sa130、2sa1855、2sa1886、2sc286~2sc288、2sc464~2sc466、2sd1266、bf769、bf959等型号。 (四)中、低频晶体管 低频晶体管的特征频率一般低于或等于3mhz,中频晶体管的特征频率一般低于30mhz。 1.中、低频小功率晶体管中低频小功率晶体管主要用于工作频率较低、功率在1w以下的低频放大和功率放大等电路中。 常见的国产低频


三极管的特性是什么?

三极管的特性是什么?

三极管的特性: 1、发射区向基区发射电子 电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。 2、基区中电子的扩散与复合 电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流Ic。也有很小一部分电子(因为基区很薄)与基区的空穴复合,扩散的电子流与复合电子流之比例决定了三极管的放大能力。 3、集电区收集电子 由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。 另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。 扩展资料: 产品作用: 晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。 ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。 晶体管被认为是现代历史中最伟大的发明之一,在重要性方面可以与印刷术,汽车和电话等的发明相提并论。 晶体管实际上是所有现代电器的关键活动(active)元件。晶体管在当今社会的重要性主要是因为晶体管可以使用高度自动化的过程进行大规模生产的能力,因而可以不可思议地达到极低的单位成本。 特别是晶体管在军事计划和宇宙航行中的威力日益显露出来以后,为争夺电子领域的优势地位,世界各国展开了激烈的竞争。为实现电子设备的小型化,人们不惜成本,纷纷给电子工业以巨大的财政资助。 参考资料来源:百度百科——三极管

谁能用最通俗易懂的语言讲解一下三极管

三极管的BE结相当于秤砣,CB结相当于重物,CE结相当于秤杆,hfe放大倍数相当于秤杆长度,很小的基极电流(秤砣)经过hfe放大倍数(秤杆很长)来控制很大的集电极电流(重物),四两拨千斤。明白不明白?通俗不通俗?


晶体管在电路中的具体作用有那些?

晶体管(transistor)是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。晶体管作为一种可变开关,基于输入的电压,控制流出的电流,因此晶体管可做为电流的开关,和一般机械开关(如Relay、switch)不同处在于晶体管是利用电讯号来控制,而且开关速度可以非常之快,在实验室中的切换速度可达100GHz以上。1.控制大功率电路和系统2
直接工作在整流380V市电上的晶体管功率开关3.
简单和优化的基极驱动造就的高性能


三极管原理带你通俗理解什么是三极管

三极管的工作原理,其实和水龙头的类似,这样解释,很容易理解!

谁能通俗易懂的解释下三极管放大原理?

简单的问题总是被某些人搞得复杂,哎,何必。。三极管它实质上更本就没有放大电流,它只是用一条回路的电流,来控制另一条电流更大的回路的电流,那大电流随着小电流的变化而变化。然后小电流就被说成“放大”了


在现代化的集成电路中,最小单位的晶体管(或者是什么别的)有多大?

纳米级


CPU里有几十亿个晶体管,这些晶体管有什么作用?

20亿晶体管是如何集成在一个小小的芯片上,而又是如何工作的?让我们一起来研究。 首先CPU在13年的时候就已经可以集成20亿个晶体管,当然作为中央处理器CPU芯片中还包涵其他各种各样的器件例如三极管,二极管,晶闸管,MOSFFET,IGBT等,这些都是CPU内部集成的芯片,CPU的安装无疑是一层层进行焊接的, 利用非常高的机器将纳米级别的晶体管进行架构式的安装,CPU内核心的也是一块半导体晶圆,通过半导体蚀刻工艺在晶圆上生成众多的晶体管单位,再通过微点焊金丝的方式将各个引脚电路引出至芯片封装的管脚,最后进行封装,每一步都是非常精密的,这些过程都是机械来做。 晶体管就是微型电子电子开关,它们是构建CPU的基石,你可以把一个晶体管当作一个电灯开关,它们有个操作位,分别代表两种状态:ON(开)和OFF(关)。这一开一关就相等于晶体管的连通与断开,而这两种状态正好与二进制中的基础状态“0”和“1”对应!这样,计算机就具备了处理信息的能力。 几乎所有计算机都包含一些ROM(可以创建一个不包含RAM的简单计算机 - 许多微控制器通过在处理器芯片本身放置一些RAM字节来实现这一点 - 但通常无法创建一个不包含ROM)。在PC上,ROM称为BIOS(基本输入/输出系统)。当微处理器启动时,它开始执行它在BIOS中找到的指令。BIOS指令执行诸如测试机器中的硬件之类的操作,然后将其转到硬盘以获取引导扇区(请参阅硬盘的工作原理)详情)。这个引导扇区是另一个小程序,BIOS从磁盘读取后将其存储在RAM中。然后微处理器开始从RAM执行引导扇区的指令。引导扇区程序将告诉微处理器从硬盘中取出其他东西到RAM中,然后微处理器执行。

CPU里有几十亿个晶体管,这些晶体管有什么作用?

CPU里都有几十亿个晶体管,万一坏掉几个还能用吗?

如果CPU中有一个晶体管坏了,会产生什么问题?

基本上不会有什么影响。 这里要先介绍封装的概念(这里的封装不是CPU生产的封装)。某些晶体管的封装意味着外部是一个整体,输入数据是密封的,结果是计算出来的,而数据是经过计算之后输出的。它就像一个黑盒。整个CPU只是一个黑盒子,可以在输入数据后输出数据。CPU内部的每个完整的功能模块,比如逻辑单元,也可以看作是封装的黑盒模块。 假设此时有一个晶体管被损坏,如果它位于算术逻辑单元中,所以理论上,算术逻辑单元不能正常工作,但是聪明的设计师已经进行了提前预防。 例如,在逻辑单元中有一个被损坏的晶体管,其结果是用来替换它的备份逻辑单元,而损坏的逻辑单元被阻塞。危害是线路长度的变化,导致时间误差,这意味着会拖拽其他的是算术逻辑单元,他们必须等待数据,结果会变长,数据处理周期是实际性能的下降。 一般来说,如果只有一个晶体管坏,就不会导致CPU不能使用,或者在执行某些输入错误结果或使其性能下降(例如,降低峰值频率)。因为在数字电路中,通常使用驱动更多的方式,也就是说一些晶体管是平行的,即使打破了晶体管,与晶体管晶体管并行的其他晶体管可以工作,驱动能力当然会随之降低,延迟增加,CPU可以运行的频率将下降。在电路中也有屏蔽效应。如果损坏的晶体管不在关键路径上或被阻塞,不会导致CPU遭到破坏。

什么是晶体管?二极管,三极管是不是就是晶体管?

您的查询字词都已标明如下:什么是晶体管 二极管 三极管 (点击查询词,可以跳到它在文中首次出现的位置)
(百度和网页http://www.fcgsgz.com/Lib2004/jxzyg/wl/2/33/02/kzzl2.htm的作者无关,不对其内容负责。百度快照谨为网络故障时之索引,不代表被搜索网站的即时页面。)

--------------------------------------------------------------------------------

电子技术发展的里程碑——晶体管

谈到晶体管,也许很多人会感到很陌生.然而,就是小小的晶体管的发明给电子学带来了一场革命.这场革命发展之迅速、波及范围之广泛,完全超出了人们的想象.

现在晶体管和微型电路几乎无所不能,无处不在.小到人们日常生活中的助听器、收音机、录音机和电视机,大到实验室仪器、工业生产及国防设备、计算机、机器人、宇宙飞盘等,都离不开晶体管.可以毫不夸张地说,晶体管奠定了现代电子技术的基础.

可是,晶体管究竟是什么样的?它又是怎样发明出来的?必不可少的一步——电子管的问世1883年,闻名世界的大发明家爱迪生发明了第一只白炽照明灯.电灯的发明,给一直生活在黑暗之中的人们送去了光明和温暖.就在这个过程中,爱迪生还发现了一个奇特的现象:一块烧红的铁会散发出电子云.后人称之为爱迪生效应.1884年的一天,一位叫弗莱明的英国发明家,远涉重洋,风尘仆仆地来到美国,拜会了他慕名已久的爱迪生.就在这两位大发明家的会见中,爱迪生再次展示了爱迪生效应.遗憾的是,由于当时技术条件的限制,不论是爱迪生,还是弗莱明,都对这一效应百思不得其解,不知道利用这一效应能做些什么.

20世纪初,有线电报问世了.这一发明给人们带来了很多便利.有线电报发出的信号是高频无线电波,收信台必须进行整流,才能从听筒中听出声音来.当时的整流器结构复杂,功效又差,亟待改进.正在研究高频整流器的弗莱明灵机一动,他想,如果把爱迪生效应应用在检波器上,结果会怎样呢?就这样,引出了一个新的发明.

1904年弗莱明在真空中加热的电丝(灯丝)前加了一块板极,从而发明了第一只电子管.他把这种装有两个极的电子管称为二极管.利用新发明的电子管,可以给电流整流,使电话受话器或其它记录装置工作起来.如今,打开一架普通的电子管收音机,我们很容易看到灯丝烧得红红的电子管.它是电子设备工作的心脏,是电子工业发展的起点.

弗莱明的二极管是一项崭新的发明.它在实验室中工作得非常好.可是,不知为什么,它在实际用于检波器上却很不成功,还不如同时发明的矿石检波器可靠.因此,对当时无线电的发展没有产生什么冲击.

此后不久,贫困潦倒的美国发明家德福雷斯特,在二极管的灯丝和板极之间巧妙地加了一个栅板,从而发明了第一只真空三极管.这一小小的改动,竟带来了意想不到的结果.它不仅反应更为灵敏、能够发出音乐或声音的振动,而且,集检波、放大和振荡三种功能于一体.因此,许多人都将三极管的发明看作电子工业真正的诞生起点.德福雷斯特自己也非常惊喜,认为“我发现了一个看不见的空中帝国”.电子管的问世,推动了无线电电子学的蓬勃发展.到1960年前后,西方国家的无线电工业年产10亿只无线电电子管.电子管除应用于电话放大器、海上和空中通讯外,也广泛渗透到家庭娱乐领域,将新闻、教育节目、文艺和音乐播送到千家万户.就连飞机、雷达、火箭的发明和进一步发展,也有电子管的一臂之力.

三条腿的魔术师电子管在电子学研究中曾是得心应手的工具.电子管器件历时40余年一直在电子技术领域里占据统治地位.但是,不可否认,电子管十分笨重,能耗大、寿命短、噪声大,制造工艺也十分复杂.因此,电子管问世不久,人们就在努力寻找新的电子器件.第二次世界大战中,电子管的缺点更加暴露无遗.在雷达工作频段上使用的普通的电子管,效果极不稳定.移动式的军用器械和设备上使用的电子管更加笨拙,易出故障.因此,电子管本身固有的弱点和迫切的战时需要,都促使许多科研单位和广大科学家,集中精力,迅速研制成功能取代电子管的固体元器件.

早在30年代,人们已经尝试着制造固体电子元件.但是,当时人们多数是直接用模仿制造真空三极管的方法来制造固体三极管.因此这些尝试毫无例外都失败了.

年6月的一天,在美国贝尔实验室的一个房间里,一架样式很普通的收音机正在播放着轻柔的音乐,许多参观者在它面前驻足不前.为什么大家都对这台收音机情有独钟呢?原来这是第一架不用电子管,而代之以一种新的固体元件——晶体管的收音机.虽然人们对这架收音机显露出浓厚的兴趣.然而,他们对晶体管本身却不以为然.美国《纽约先驱论坛报》的记者在报道中写道:“这一器件还在实验室阶段,工程师们都认为它在电子工业中的革新是有限的.”事实上,晶体管发明以后,在不长的时间内,它的深远影响便很快地显示出来.它在电子学领域完成了一场真正的革命.

什么是晶体管呢?通俗地说,晶体管是半导体做的固体电子元件.像金银铜铁等金属,它们导电性能好,叫做导体.木材、玻璃、陶瓷、云母等不易导电,叫做绝缘体.导电性能介于导体和绝缘体之间的物质,就叫半导体.晶体管就是用半导体材料制成的.这类材料最常见的便是锗和硅两种.

半导体是19世纪末才发现的一种材料.当时人们并没有发现半导体的价值,也就没有注重半导体的研究.直到二次大战中,由于雷达技术的发展,半导体器件——微波矿石检波器的应用日趋成熟,在军事上发挥了重要作用,这才引起了人们对半导体的兴趣.许多科学家都投入到半导体的深入研究中.经过紧张的研究工作,美国物理学家肖克利、巴丁和布拉顿三人捷足先登,合作发明了晶体管——一种三个支点的半导体固体元件.晶体管被人们称为“三条腿的魔术师”.它的发明是电子技术史中具有划时代意义的伟大事件,它开创了一个崭新的时代——固体电子技术时代.他们三人也因研究半导体及发现晶体管效应而共同获得1956年最高科学奖——诺贝尔物理奖.

肖克利小组与晶体管美国人威廉·肖克利,1910年2月13日生于伦敦,曾在美国麻省理工学院学习量子物理,1936年得到该校博士学位后,进入久负盛名的贝尔实验室工作.贝尔实验室是电话发明人贝尔创立的.在电子、特别在通讯领域是最有名气的研究所,号称“研究王国”.早在1936年,当时的研究部主任,后来的贝尔实验室总裁默文·凯利就对肖克利说过,为了适应通讯不断增长的需要,将来一定会用电子交换取代电话系统的机械转换.这段话给肖克利留下了不可磨灭的印象,激起他满腔热情,把毕生精力投入到推进电子技术进步的事业中.沃尔特·布拉顿也是美国人,1902年2月10日出生在中国南方美丽的城市厦门,当时他父亲受聘在中国任教.布拉顿是实验专家,1929年获得明尼苏达大学的博士学位后,进入贝尔研究所从事真空管研究工作.温文儒雅的美国人巴丁是一个大学教授的儿子,1908年在美国威斯康星州的麦迪逊出生,相继于1928年和1929年在威斯康星大学获得两个学位.后来又转入普林斯顿大学攻读固体物理,1936年获得博士学位.1945年来到贝尔实验室工作.默文·凯利是一位颇有远见的科技管理人员.他从30年代起,就注意寻找和采用新材料及依据新原理工作的电子放大器件.在第二次世界大战前后,敏锐的科研洞察力促使他果断地决定加强半导体的基础研究,以开拓电子技术的新领域.于是,1945年夏天,贝尔实验室正式决定以固体物理为主要研究方向,并为此制定了一个庞大的研究计划.发明晶体管就是这个计划的一个重要组成部分.1946年1月,贝尔实验室的固体物理研究小组正式成立了.这个小组以肖克利为首,下辖若干小组,其中之一包括布拉顿、巴丁在内的半导体小组.在这个小组中,活跃着理论物理学家、实验专家、物理化学家、线路专家、冶金专家、工程师等多学科多方面的人才.他们通力合作,既善于汲取前人的有益经验,又注意借鉴同时代人的研究成果,博采众家之长.小组内部广泛开展有益的学术探讨.“有新想法,新问题,就召集全组讨论,这是习惯”.在这样良好的学术环境中,大家都充满热情,完全沉醉在理论物理领域的研究与探索中.

开始,布拉顿和巴丁在研究晶体管时,采用的是肖克利提出的场效应概念.场效应设想是人们提出的第一个固体放大器的具体方案.根据这一方案,他们仿照真空三极管的原理,试图用外电场控制半导体内的电子运动.但是事与愿违,实验屡屡失败.

人们得到的效应比预期的要小得多.人们困惑了,为什么理论与实际总是矛盾的呢?

问题究竟出在那里呢?经过多少个不眠之夜的苦苦思索,巴丁又提出了一种新的理论——表面态理论.这一理论认为表面现象可以引起信号放大效应.表面态概念的引入,使人们对半导体的结构和性质的认识前进了一大步.布拉顿等人乘胜追击,认真细致地进行了一系列实验.结果,他们意外地发现,当把样品和参考电极放在电解液里时,半导体表面内部的电荷层和电势力发生了改变,这不正是肖克利曾经预言过的场效应吗?这个发现使大家十分振奋.在极度兴奋中,他们加快了研究步伐,利用场效应又反复进行了实验.谁知,继续实验中突然发生了与以前截然不同的效应.这接踵而至的新情况大大出乎实验者的预料.

人们的思路被打断了,制作实用器件的原计划不能不改变了,渐趋明朗的形势又变得扑朔迷离了.然而肖克利小组并没有知难而退.他们紧紧循着茫茫迷雾中的一丝光亮,改变思路,继续探索.经过多次地分析、计算、实验,1947年12月23日,人们终于得到了盼望已久的“宝贝”.这一天,巴丁和布拉顿把两根触丝放在锗半导体晶片的表面上,当两根触丝十分靠近时,放大作用发生了.世界第一只固体放大器——晶体管也随之诞生了.在这值得庆祝的时刻,布拉顿按捺住内心的激动,仍然一丝不苟地在实验笔记中写道:“电压增益100,功率增益40,电流损失1/2.5……亲眼目睹并亲耳听闻音频的人有吉布尼、摩尔、巴丁、皮尔逊、肖克利、弗莱彻和包文.”在布拉顿的笔记上,皮尔逊、摩尔和肖克利等人分别签上了日期和他们的名字表示认同.

巴丁和布拉顿实验成功的这种晶体管,是金属触丝和半导体的某一点接触,故称点接触晶体管.这种晶体管对电流、电压都有放大作用.

晶体管发明之后基于严谨的科学态度,贝尔实验室并没有立即发表肖克利小组的研究成果.他们认为,还需要时间弄清晶体管的效应,以便编写论文和申请专利.此后一段时间里,肖克利等人在极度紧张的状态中忙碌地工作着.他们心中隐藏着一丝忧虑.如果别人也发明了晶体管并率先公布了,他们的心血就付之东流了.他们的担心绝非多虑,当时许多科学家都在潜心于这一课题的研究.1948年初,在美国物理学会的一次会议上,柏杜大学的布雷和本泽报告了他们在锗的点接触方面所进行的实验及其发现.当时贝尔实验室发明晶体管的秘密尚未公开,它的发明人之一——布拉顿此刻就端坐在听众席上.布拉顿清楚地意识到布雷等人的实验距离晶体管的发明就差一小步了.因此,会后布雷与布拉顿聊天时谈到他们的实验时,布拉顿立刻紧张起来.他不敢多开口,只让对方讲话,生怕泄密给对方,支吾几句就匆匆忙忙地走开了.后来,布雷曾惋惜地说过:“如果把我的电极靠近本泽的电极,我们就会得到晶体管的作用,这是十分明白的.”由此可见,当时科学界的竞争是多么的激烈!实力雄厚的贝尔实验室在这场智慧与技能的角逐中,也不过略胜一筹.

晶体管发明半年以后,在1948年6月30日,贝尔实验室首次在纽约向公众展示了晶体管.这个伟大的发明使许多专家不胜惊讶.然而,对于它的实用价值,人们大都表示怀疑.当年7月1日的《纽约时报》只以8个句子、201个文字的短讯形式报道了本该震惊世界的这条新闻.在公众的心目中,晶体管不过是实验室的珍品而已.估计只能做助听器之类的小东西,不可能派上什么大用场.

的确,当时的点接触晶体管同矿石检波器一样,利用触须接点,很不稳定,噪声大,频率低,放大功率小,性能还赶不上电子管,制作又很困难.难怪人们对它无动于衷.然而,物理学家肖克利等人却坚信晶体管大有前途,它的巨大潜力还没有被人们所认识.于是,在点接触式晶体管发明以后,他们仍然不遗余力,继续研究.又经过一个多月的反复思索,肖克利瘦了,眼中也布满了血丝.一个念头却在心中越来越明晰了,那就是以往的研究之所以失败,根本原因在于人们不顾一切地盲目模仿真空三极管.这实际上走入了研究的误区.晶体管同电子管产生于完全不同的物理现象,这就暗示晶体管效应有其独特之处.明白了这一点,肖克利当即决定暂时放弃原来追求的场效应晶体管,集中精力实现另一个设想——晶体管的放大作用.正确的思想终于开出了最美的花朵.1948年11月,肖克利构思出一种新型晶体管,其结构像“三明治”夹心面包那样,把N型半导体夹在两层P型半导体之间.这是一个多么富有想象力的设计啊!可惜的是,由于当时技术条件的限制,研究和实验都十分困难.直到1950年,人们才成功地制造出第一个PN结型晶体管.

电子技术发展史上一座里程碑晶体管的出现,是电子技术之树上绽开的一朵绚丽多彩的奇葩.同电子管相比,晶体管具有诸多优越性:①晶体管的构件是没有消耗的.无论多么优良的电子管,都将因阴极原子的变化和慢性漏气而逐渐劣化.由于技术上的原因,晶体管制作之初也存在同样的问题.随着材料制作上的进步以及多方面的改善,晶体管的寿命一般比电子管长100到1000倍,称得起永久性器件的美名.②晶体管消耗电子极少,仅为电子管的十分之一或几十分之一.它不像电子管那样需要加热灯丝以产生自由电子.一台晶体管收音机只要几节干电池就可以半年一年地听下去,这对电子管收音机来说,是难以做到的.③晶体管不需预热,一开机就工作.例如,晶体管收音机一开就响,晶体管电视机一开就很快出现画面.电子管设备就做不到这一点.开机后,非得等一会儿才听得到声音,看得到画面.显然,在军事、测量、记录等方面,晶体管是非常有优势的.④晶体管结实可靠,比电子管可靠100倍,耐冲击、耐振动,这都是电子管所无法比拟的.另外,晶体管的体积只有电子管的十分之一到百分之一,放热很少,可用于设计小型、复杂、可靠的电路.晶体管的制造工艺虽然精密,但工序简便,有利于提高元器件的安装密度.正因为晶体管的性能如此优越,晶体管诞生之后,便被广泛地应用于工农业生产、国防建设以及人们日常生活中.1953年,首批电池式的晶体管收音机一投放市场,就受到人们的热烈欢迎,人们争相购买这种收音机.接着,各厂家之间又展开了制造短波晶体管的竞赛.此后不久,不需要交流电源的袖珍“晶体管收音机”开始在世界各地出售,又引起了一个新的消费热潮.

由于硅晶体管适合高温工作,可以抵抗大气影响,在电子工业领域是最受欢迎的产品之一.从1967年以来,电子测量装置或者电视摄像机如果不是“晶体管化”的,那么就别想卖出去一件.轻便收发机,甚至车载的大型发射机也都晶体管化了.

另外,晶体管还特别适合用作开关.它也是第二代计算机的基本元件.人们还常常用硅晶体管制造红外探测器.就连可将太阳能转变为电能的电池——太阳能电池也都能用晶体管制造.这种电池是遨游于太空的人造卫星的必不可少的电源.晶体管这种小型简便的半导体元件还为缝纫机、电钻和荧光灯开拓了电子控制的途径.从1950年至1960年的十年间,世界主要工业国家投入了巨额资金,用于研究、开发与生产晶体管和半导体器件.例如,纯净的锗或硅半导体,导电性能很差,但加入少量其它元素(称为杂质)后,导电性能会提高许多.但是要想把定量杂质正确地熔入锗或硅中,必须在一定的温度下,通过加热等方法才能实现.而一旦温度高于摄氏75度,晶体管就开始失效.为了攻克这一技术难关,美国政府在工业界投资数百万美元,以开展这项新技术的研制工作.在这样雄厚的财政资助下,没过多久,人们便掌握了这种高熔点材料的提纯、熔炼和扩散的技术.特别是晶体管在军事计划和宇宙航行中的威力日益显露出来以后,为争夺电子领域的优势地位,世界各国展开了激烈的竞争.为实现电子设备的小型化,人们不惜成本,纷纷给电子工业以巨大的财政资助.

自从1904年弗莱明发明真空二极管,1906年德福雷斯特发明真空三极管以来,电子学作为一门新兴学科迅速发展起来.但是电子学真正突飞猛进的进步,还应该是从晶体管发明以后开始的.尤其是PN结型晶体管的出现,开辟了电子器件的新纪元,引起了一场电子技术的革命.在短短十余年的时间里,新兴的晶体管工业以不可战胜的雄心和年轻人那样无所顾忌的气势,迅速取代了电子管工业通过多年奋斗才取得的地位,一跃成为电子技术领域的排头兵.现代电子技术的基础诚然,电子管的发明使电子设备发生了革命性变化.但是电子管体大易碎,费电又不可靠.因此,晶体管的问世被誉为本世纪最伟大的发明之一,它解决了电子管存在的大部分问题.可是单个晶体管的出现,仍然不能满足电子技术飞速发展的需要.随着电子技术应用的不断推广和电子产品发展的日趋复杂,电子设备中应用的电子器件越来越多.比如二次世界大战末出现的B29轰炸机上装有1千个电子管和1万多个无线电元件.电子计算机就更不用说了.1960年上市的通用型号计算机有10万个二极管和2.5万个晶体管.一个晶体管只能取代一个电子管,极为复杂的电子设备中就可能要用上百万个晶体管.一个晶体管有3条腿,复杂一些的设备就可能有数百万个焊接点,稍一不慎,就极有可能出现故障.为确保设备的可靠性,缩小其重量和体积,人们迫切需要在电子技术领域来一次新的突破.1957年苏联成功地发射了第一颗人造卫星.这一震惊世界的消息引起了美国朝野的极大震动,它严重挫伤了美国人的自尊心和优越感,发达的空间技术是建立在先进的电子技术基础上的.为夺得空间科技的领先地位,美国政府于1958年成立了国家航空和宇航局,负责军事和宇航研究,为实现电子设备的小型化和轻量化,投入了天文数字的经费.就是在这种激烈的军备竞赛的刺激下,在已有的晶体管技术的基础上,一种新兴技术诞生了,那就是今天大放异彩的集成电路.有了集成电路,计算机、电视机等与人类社会生活密切相关的设备不仅体积小了,功能也越来越齐全了,给现代人的工作、学习和娱乐带来了极大便利.那么,什么是集成电路呢?集成电路是在一块几平方毫米的极其微小的半导体晶片上,将成千上万的晶体管、电阻、电容、包括连接线做在一起.真正是立锥之地布千军.它是材料、元件、晶体管三位一体的有机结合.

集成电路的问世是离不开晶体管技术的,没有晶体管就不会有集成电路.本质上,集成电路是最先进的晶体管——外延平面晶体制造工艺的延续.集成电路设想的提出,同晶体管密切相关.1952年,英国皇家雷达研究所的一位著名科学家达默,在一次会议上曾指出:“随着晶体管的出现和对半导体的全面研究,现在似乎可以想象,未来电子设备是一种没有连接线的固体组件.”虽然达默的设想并未付诸实施,但是他为人们的深入研究指明了方向.

后来,一个叫基尔比的美国人步达默的后尘,走上了研究固体组件这条崎岖的小路.基尔比毕业于伊利诺斯大学电机工程系.1952年一个偶然机会,基尔比参加了贝尔实验室的晶体管讲座.富于创造性的基尔比一下子就被晶体管这个小东西迷住了.

当时,他在一家公司负责一项助听器研究计划.心系晶体管的基尔比不由自主地想把晶体管用在助听器上,他果然获得了成功.他研究出一种简便的方法,将晶体管直接安装在塑料片上,并用陶瓷密封.初步的成功使他对晶体管的兴趣与日俱增.为寻求更大的发展,基尔比于1958年5月进入得克萨斯仪器公司.当时,公司正参与美国通信部队的一项微型组件计划.基尔比非常希望能在这一计划中一显身手.强烈的自尊促使他决心凭自己的智慧和努力进入这一计划.于是,他常常一个人埋头在工厂,思考采用半导体制造整个电路的途径.记不清多少次苦苦思索,多少回实验,多少次挫折,经过长时间的孤军奋战,到1959年,一块集成电路板终于在基尔比的手中诞生了.

同年3月,这一产品被拿到无线电工程师协会上展出.得克萨斯公司当时的副总裁谢泼德自豪地宣布,这是“硅晶体管后得克萨斯仪器公司最重要的开发成果”.在晶体管技术基础上迅速发展起来的集成电路,带来了微电子技术的突飞猛进.

微电子技术的不断进步,极大降低了晶体管的成本,在1960年,生产1只晶体管要花10美元,而今天,1只嵌入集成电路里的晶体管的成本还不到1美分.这使晶体管的应用更为广泛了.

不仅如此,微电子技术通过微型化、自动化、计算机化和机器人化,将从根本上改变人类的生活.它正在冲击着人类生活的许多方面:劳动生产、家庭、政治、科学、战争与和平.

返回http://cache.baidu.com/c?word=%CA%B2%C3%B4%3B%CA%C7%3B%BE%A7%CC%E5%3B%B9%DC%2C%B6%FE%BC%AB%B9%DC%2C%C8%FD%BC%AB%B9%DC&url=http%3A//www%2Efcgsgz%2Ecom/Lib2004/jxzyg/wl/2/33/02/kzzl2%2Ehtm&b=0&a=84&user=baidu


什么是晶体管?

什么是晶体管及其种类与参数?
晶体管是半导体三极管中应用最广泛的器件之一,在电路中用“V”或“VT”(旧文字符号为“Q”、“GB”等)表示。
晶体管是内部含有两个PN结,外部通常为三个引出电极的半导体器件。它对电信号有放大和开关等作用,应用十分广泛。
一、晶体管的种类
晶体管有多种分类方法。
(一)按半导体材料和极性分类
按晶体管使用的半导体材料可分为硅材料晶体管和锗材料晶体管管。按晶体管的极性可分为锗NPN型晶体管、锗PNP晶体管、硅NPN型晶体管和硅PNP型晶体管。
(二)按结构及制造工艺分类
晶体管按其结构及制造工艺可分为扩散型晶体管、合金型晶体管和平面型晶体管。
(三)按电流容量分类
晶体管按电流容量可分为小功率晶体管、中功率晶体管和大功率晶体管。
(四)按工作频率分类
晶体管按工作频率可分为低频晶体管、高频晶体管和超高频晶体管等。
(五)按封装结构分类
晶体管按封装结构可分为金属封装(简称金封)晶体管、塑料封装(简称塑封)晶体管、玻璃壳封装(简称玻封)晶体管、表面封装(片状)晶体管和陶瓷封装晶体管等。其封装外形多种多样。
(六)按功能和用途分类
晶体管按功能和用途可分为低噪声放大晶体管、中高频放大晶体管、低频放大晶体管、开关晶体管、达林顿晶体管、高反压晶体管、带阻晶体管、带阻尼晶体管、微波晶体管、光敏晶体管和磁敏晶体管等多种类型。
二、晶体管的主要参数
晶体管的主要参数有电流放大系数、耗散功率、频率特性、集电极最大电流、最大反向电压、反向电流等。
(一)电流放大系数
电流放大系数也称电流放大倍数,用来表示晶体管放大能力。
根据晶体管工作状态的不同,电流放大系数又分为直流电流放大系数和交流电流放大系数。
1.直流电流放大系数
直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。
2.交流电流放大系数
交流电流放大系数也称动态电流放大系数或交流放大倍数,是指在交流状态下,晶体管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。
hFE或β既有区别又关系密切,两个参数值在低频时较接近,在高频时有一些差异。
(二)耗散功率
耗散功率也称集电极最大允许耗散功率PCM,是指晶体管参数变化不超过规定允许值时的最大集电极耗散功率。
耗散功率与晶体管的最高允许结温和集电极最大电流有密切关系。晶体管在使用时,其实际功耗不允许超过PCM值,否则会造成晶体管因过载而损坏。
通常将耗散功率PCM小于1W的晶体管称为小功率晶体管,PCM等于或大于1W、小于5W的晶体管被称为中功率晶体管,将PCM等于或大于5W的晶体管称为大功率晶体管。
(三)频率特性
晶体管的电流放大系数与工作频率有关。若晶体管超过了其工作频率范围,则会出现放大能力减弱甚至失去放大作用。
晶体管的频率特性参数主要包括特征频率fT和最高振荡频率fM等。
1.特征频率fT
晶体管的工作频率超过截止频率fβ或fα时,其电流放大系数β值将随着频率的升高而下降。特征频率是指β值降为1时晶体管的工作频率。
通常将特征频率fT小于或等于3MHZ的晶体管称为低频管,将fT大于或等于30MHZ的晶体管称为高频管,将fT大于3MHZ、小于30MHZ的晶体管称为中频管。
2.最高振荡频率fM
最高振荡频率是指晶体管的功率增益降为1时所对应的频率。
通常,高频晶体管的最高振荡频率低于共基极截止频率fα,而特征频率fT则高于共基极截止频率fα、低于共集电极截止频率fβ。
(四)集电极最大电流ICM
集电极最大电流是指晶体管集电极所允许通过的最大电流。当晶体管的集电极电流IC超过ICM时,晶体管的β值等参数将发生明显变化,影响其正常工作,甚至还会损坏。
(五)最大反向电压
最大反向电压是指晶体管在工作时所允许施加的最高工作电压。它包括集电极—发射极反向击穿电压、集电极—基极反向击穿电压和发射极—基极反向击穿电压。
1.集电极—发射极反向击穿电压
该电压是指当晶体管基极开路时,其集电极与发射极之间的最大允许反向电压,一般用VCEO或BVCEO表示。
2.集电极—基极反向击穿电压
该电压是指当晶体管发射极开路时,其集电极与基极之间的最大允许反向电压,用VCBO或BVCBO表示。
3.发射极—基极反向击穿电压
该电压是指当晶体管的集电极开路时,其发射极与基极与之间的最大允许反向电压,用VEBO或BVEBO表示。
(六)反向电流
晶体管的反向电流包括其集电极—基极之间的反向电流ICBO和集电极—发射极之间的反向击穿电流ICEO。
1.集电极—基极之间的反向电流ICBO
ICBO也称集电结反向漏电电流,是指当晶体管的发射极开路时,集电极与基极之间的反向电流。ICBO对温度较敏感,该值越小,说明晶体管的温度特性越好。
2.集电极—发射极之间的反向击穿电流ICEO
ICEO是指当晶体管的基极开路时,其集电极与发射极之间的反向漏电电流,也称穿透电流。此电流值越小,说明晶体管的性能越好。


什么是晶体管

晶体管(transistor)是一种固体半导体器件,具有检波、整流、放大、开关、稳压、信号调制等多种功能。晶体管作为一种可变电流开关,能够基于输入电压控制输出电流。与普通机械开关(如Relay、switch)不同,晶体管利用电讯号来控制自身的开合,而且开关速度可以非常快,实验室中的切换速度可达100GHz以上。 2016年,劳伦斯伯克利国家实验室的一个团队打破了物理极限,将现有的最精尖的晶体管制程从14nm缩减到了1nm,完成了计算技术界的一大突破。 1947年12月,美国贝尔实验室的肖克利、巴丁和布拉顿组成的研究小组,研制出一种点接触型的锗晶体管。晶体管的问世,是20世纪的一项重大发明,是微电子革命的先声。晶体管出现后,人们就能用一个小巧的、消耗功率低的电子器件,来代替体积大、功率消耗大的电子管了。晶体管的发明又为后来集成电路的诞生吹响了号角。20世纪最初的10年,通信系统已开始应用半导体材料。20世纪上半叶,在无线电爱好者中广泛流行的矿石收音机,就采用矿石这种半导体材料进行检波。半导体的电学特性也在电话系统中得到了应用。


什么叫晶体管

什么是晶体管及其种类与参数?
晶体管是半导体三极管中应用最广泛的器件之一,在电路中用“V”或“VT”(旧文字符号为“Q”、“GB”等)表示。
晶体管是内部含有两个PN结,外部通常为三个引出电极的半导体器件。它对电信号有放大和开关等作用,应用十分广泛。
一、晶体管的种类
晶体管有多种分类方法。
(一)按半导体材料和极性分类

按晶体管使用的半导体材料可分为硅材料晶体管和锗材料晶体管管。按晶体管的极性可分为锗NPN型晶体管、锗PNP晶体管、硅NPN型晶体管和硅PNP型晶体管。
(二)按结构及制造工艺分类
晶体管按其结构及制造工艺可分为扩散型晶体管、合金型晶体管和平面型晶体管。
(三)按电流容量分类

晶体管按电流容量可分为小功率晶体管、中功率晶体管和大功率晶体管。
(四)按工作频率分类
晶体管按工作频率可分为低频晶体管、高频晶体管和超高频晶体管等。
(五)按封装结构分类
晶体管按封装结构可分为金属封装(简称金封)晶体管、塑料封装(简称塑封)晶体管、玻璃壳封装(简称玻封)晶体管、表面封装(片状)晶体管和陶瓷封装晶体管等。其封装外形多种多样。
(六)按功能和用途分类
晶体管按功能和用途可分为低噪声放大晶体管、中高频放大晶体管、低频放大晶体管、开关晶体管、达林顿晶体管、高反压晶体管、带阻晶体管、带阻尼晶体管、微波晶体管、光敏晶体管和磁敏晶体管等多种类型。
二、晶体管的主要参数
晶体管的主要参数有电流放大系数、耗散功率、频率特性、集电极最大电流、最大反向电压、反向电流等。
(一)电流放大系数
电流放大系数也称电流放大倍数,用来表示晶体管放大能力。
根据晶体管工作状态的不同,电流放大系数又分为直流电流放大系数和交流电流放大系数。
1.直流电流放大系数 直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。
2.交流电流放大系数 交流电流放大系数也称动态电流放大系数或交流放大倍数,是指在交流状态下,晶体管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。
hFE或β既有区别又关系密切,两个参数值在低频时较接近,在高频时有一些差异。
(二)耗散功率
耗散功率也称集电极最大允许耗散功率PCM,是指晶体管参数变化不超过规定允许值时的最大集电极耗散功率。
耗散功率与晶体管的最高允许结温和集电极最大电流有密切关系。晶体管在使用时,其实际功耗不允许超过PCM值,否则会造成晶体管因过载而损坏。
通常将耗散功率PCM小于1W的晶体管称为小功率晶体管,PCM等于或大于1W、小于5W的晶体管被称为中功率晶体管,将PCM等于或大于5W的晶体管称为大功率晶体管。
(三)频率特性
晶体管的电流放大系数与工作频率有关。若晶体管超过了其工作频率范围,则会出现放大能力减弱甚至失去放大作用。
晶体管的频率特性参数主要包括特征频率fT和最高振荡频率fM等。
1.特征频率fT 晶体管的工作频率超过截止频率fβ或fα时,其电流放大系数β值将随着频率的升高而下降。特征频率是指β值降为1时晶体管的工作频率。
通常将特征频率fT小于或等于3MHZ的晶体管称为低频管,将fT大于或等于30MHZ的晶体管称为高频管,将fT大于3MHZ、小于30MHZ的晶体管称为中频管。
2.最高振荡频率fM 最高振荡频率是指晶体管的功率增益降为1时所对应的频率。
通常,高频晶体管的最高振荡频率低于共基极截止频率fα,而特征频率fT则高于共基极截止频率fα、低于共集电极截止频率fβ。
(四)集电极最大电流ICM
集电极最大电流是指晶体管集电极所允许通过的最大电流。当晶体管的集电极电流IC超过ICM时,晶体管的β值等参数将发生明显变化,影响其正常工作,甚至还会损坏。
(五)最大反向电压
最大反向电压是指晶体管在工作时所允许施加的最高工作电压。它包括集电极—发射极反向击穿电压、集电极—基极反向击穿电压和发射极—基极反向击穿电压。
1.集电极—发射极反向击穿电压 该电压是指当晶体管基极开路时,其集电极与发射极之间的最大允许反向电压,一般用VCEO或BVCEO表示。
2.集电极—基极反向击穿电压 该电压是指当晶体管发射极开路时,其集电极与基极之间的最大允许反向电压,用VCBO或BVCBO表示。
3.发射极—基极反向击穿电压 该电压是指当晶体管的集电极开路时,其发射极与基极与之间的最大允许反向电压,用VEBO或BVEBO表示。
(六)反向电流
晶体管的反向电流包括其集电极—基极之间的反向电流ICBO和集电极—发射极之间的反向击穿电流ICEO。
1.集电极—基极之间的反向电流ICBO ICBO也称集电结反向漏电电流,是指当晶体管的发射极开路时,集电极与基极之间的反向电流。ICBO对温度较敏感,该值越小,说明晶体管的温度特性越好。
2.集电极—发射极之间的反向击穿电流ICEO ICEO是指当晶体管的基极开路时,其集电极与发射极之间的反向漏电电流,也称穿透电流。此电流值越小,说明晶体管的性能越好。


晶体管是什么?

晶体管,本名是半导体三极管,是内部含有两个PN结,外部通常为三个引出电极的半导体器件。它对电信号有放大和开关等作用,应用十分广泛。输入级和输出级都采用晶体管的逻辑电路,叫做晶体管-晶体管逻辑电路,书刊和实用中都简称为TTL电路,它属于半导体集成电路的一种,其中用得最普遍的是TTL与非门。TTL与非门是将若干个晶体管和电阻元件组成的电路系统集中制造在一块很小的硅片上,封装成一个独立的元件.晶体管是半导体三极管中应用最广泛的器件之一,在电路中用“V”或“VT”(旧文字符号为“Q”、“GB”等)表示。 晶体管被认为是现代历史中最伟大的发明之一,在重要性方面可以与印刷术,汽车和电话等的发明相提并论。晶体管实际上是所有现代电器的关键活动(active)元件。晶体管在当今社会的重要性主要是因为晶体管可以使用高度自动化的过程进行大规模生产的能力,因而可以不可思议地达到极低的单位成本。 虽然数以百万计的单体晶体管还在使用,绝大多数的晶体管是和二极管|-{A|zh-cn:二极管;zh-tw:二极体}-,电阻,电容一起被装配在微芯片(芯片)上以制造完整的电路。模拟的或数字的或者这两者被集成在同一块芯片上。设计和开发一个复杂芯片的生本是相当高的,但是当分摊到通常百万个生产单位上,每个芯片的价格就是最小的。一个逻辑门包含20个晶体管,而2005年一个高级的微处理器使用的晶体管数量达2.89亿个。 晶体管的低成本,灵活性和可靠性使得其成为非机械任务的通用器件,例如数字计算。在控制电器和机械方面,晶体管电路也正在取代电机设备,因为它通常是更便宜,更有效地仅仅使用标准集成电路并编写计算机程序来完成同样的机械任务,使用电子控制,而不是设计一个等效的机械控制。 因为晶体管的低成本和后来的电子计算机,数字化信息的浪潮来到了。由于计算机提供快速的查找、分类和处理数字信息的能力,在-{A|zh-cn:信息;zh-tw:资讯}--{A|zh-cn:数字;zh-tw:数位}-化方面投入了越来越多的精力。今天的许多媒体是通过电子形式发布的,最终通过计算机转化和呈现为模拟形式。


对于晶体管我们都知道它主要有PNP和NPN两种类型,并且有三个电极:基极、集电极和发射极。

有万用表的话,直接把三极管的三个引脚插进NPN或者PNP的孔里,调到HFE档位,测得数值最大的就是正确的,对应的e,b,c直接在万用表上看出来了。


IRF630的基本参数

IRF630的基本参数

基本参数 漏极电流, Id 最大值:9A 电压, Vds 最大:200V 开态电阻, Rds(on):0.4ohm 电压 @ Rds测量:10V 电压, Vgs 最高:3V 功率, Pd:100W 封装类型, 替代:SOT-78B 引脚节距:2.54mm 时间, trr 典型值:170ns 晶体管数:1 晶体管类型:MOSFET 满功率温度:25°C 电容值, Ciss 典型值:540pF 电流, Idm 脉冲:36A 表面安装器件:通孔安装 针脚格式:1G 2+插口 D 3S 阈值电压, Vgs th 最低:2V 阈值电压, Vgs th 最高:4V。 扩展资料 IRF630的晶体管极性是N,功耗是100W,封装类型是TO-220,针脚数是3。 同电子管相比,晶体管具有诸多优越性: 1、构件没有消耗 无论多么优良的电子管,都将因阴极原子的变化和慢性漏气而逐渐劣化。由于技术上的原因,晶体管制作之初也存在同样的问题。随着材料制作上的进步以及多方面的改善,晶体管的寿命一般比电子管长100到1000倍,称得起永久性器件的美名。 2、消耗电能极少 仅为电子管的十分之一或几十分之一。它不像电子管那样需要加热灯丝以产生自由电子。一台晶体管收音机只要几节干电池就可以半年一年地听下去,这对电子管收音机来说,是难以做到的。 3、不需预热 一开机就工作。例如,晶体管收音机一开就响,晶体管电视机一开就很快出现画面。电子管设备就做不到这一点。开机后,非得等一会儿才听得到声音,看得到画面。显然,在军事、测量、记录等方面,晶体管是非常有优势的。 4、结实可靠 比电子管可靠100倍,耐冲击、耐振动,这都是电子管所无法比拟的。另外,晶体管的体积只有电子管的十分之一到百分之一,放热很少,可用于设计小型、复杂、可靠的电路。晶体管的制造工艺虽然精密,但工序简便,有利于提高元器件的安装密度。 参考资料来源:百度百科-IRF630 参考资料来源:百度百科-晶体管

CHN450代表什么三极管?

三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种控制电流的半导体器件其作用是把微弱信号放大成幅度值较大的电信号, 也用作无触点开关。晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。 一、三极管的电路符号 二、三极管的分类 a.按频率分:高频管和低频管 b.按功率分:小功率管,中功率管和的功率管 c.按机构分:PNP管和NPN管 d.按材质分:硅管和锗管 e.按功能分:开关管和放大 三、用万用表判断半导体三极管的极性和类型(用指针式万用表) a.先选量程:R﹡100或R﹡1K档位。 b.判别半导体三极管基极: 用万用表黑表笔固定三极管的某一个电极,红表笔分别接半导体三极管另外两各电极,观察指针偏转,若两次的测量阻值都大或是都小,则改脚所接就是基极(两次阻值都小的为NPN型管,两次阻值都大的为PNP型管),若两次测量阻值一大一小,则用黑笔重新固定半导体三极管一个引脚极继续测量,直到找到基极。 c.判别半导体三极管的c极和e极: 确定基极后,对于NPN管,用万用表两表笔接三极管另外两极,交替测量两次,若两次测量的结果不相等,则其中测得阻值较小得一次黑笔接的是e极,红笔接得是c极(若是PNP型管则黑红表笔所接得电极相反)。 d.判别半导体三极管的类型。 如果已知某个半导体三极管的基极,可以用红表笔接基极,黑表笔分别测量其另外两个电极引脚,如果测得的电阻值很大,则该三极管是NPN型半导体三极管,如果 测量的电阻值都很小,则该三极管是PNP型半导体三极管。 四、半导体三极管的好坏检测 a.先选量程:R﹡100或R﹡1K档位 b.测量PNP型半导体三极管的发射极和集电极的正向电阻值。 红表笔接基极,黑表笔接发射极,所测得阻值为发射极正向电阻值,若将黑表笔接集电极(红表笔不动),所测得阻值便是集电极的正向电阻值,正向电阻值愈小愈好。 c.测量PNP型半导体三极管的发射极和集电极的反向电阻值。 将黑表笔接基极,红表笔分别接发射极与集电极,所测得阻值分别为发射极和集电极的反向电阻,反向电阻愈小愈好。 d.测量NPN型半导体三极管的发射极和集电极的正向电阻值的方法和测量PNP型半导体三极管的方法相反。


slot1结构是什么?

slot1结构是什么?

SLOT 1是英特尔公司为取代Socket 7而开发的CPU接口。 CPU插槽主要分为Socket、Slot这两种,就是用于安装CPU的插座。CPU经过这么多年的发展,采用的接口方式有引脚式、卡式、触点式、针脚式等, 应用广泛的CPU接口一般为针脚式接口,对应到主板上就有相应的插槽类型。CPU接口类型不同,在插孔数、体积、形状都有变化,所以不能互相接插。 扩展资料 Socket 771是Intel2005年底发布的双路服务器/工作站CPU的插槽标准,采用此插槽的有采用LGA封装的Dempsey核心的Xeon 5000系列和Woodcrest核心的Xeon 5100系列。 与以前的Socket 603和Socket 604明显不同,Socket 771与桌面平台的Socket 775倒还基本类似, Socket 771插槽非常复杂,没有Socket 603插槽和Socket 604插槽那样的CPU针脚插孔,取而代之的是771根有弹性的触须状针脚,通过与CPU底部对应的触点相接触而获得信号。 与Socket 775插槽类似的还有,Socket 771插槽同样为全金属制造,在插槽的盖子上也卡着一块保护盖。Socket 771插槽支持667MHz、1066MHz和1333MHz前端总线频率。 参考资料来源:百度百科-CPU插槽

晶体管定义和分类?

1.场效应管主要有结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。绝缘栅型
场效应管的衬底(B)与源析(S)连在一起,它的三个极分别为栅极(G)、漏极(D)
和源极(S)。晶体管分NPN和PNP管,它的三个极分别为基极(b)、集电极(c)、发射
极(e)。场效应管的G、D、S极与晶体管的b、c、e极有相似的功能。绝缘栅型效应管和
结型场效应管的区别在于它们的导电机构和电流控制原理根本不同,结型管是利用耗尽
区的宽度变化来改变导电沟道的宽窄以便控制漏极电流,绝缘栅型场效应管则是用半导
体表面的电场效应、电感应电荷的多少去改变导电沟道来控制电流。它们性质的差异使
结型场效应管往往运用在功放输入级(前级),绝缘栅型场效应管则用在功放末级(输
出级)。

2.双极型晶体管内部电流由两种载流子形成,它是利用电流来控制。场效应管是电
压控制器件,栅极(G)基本上不取电流,而晶体管的基极总要取一定的电流,所以在只
允许从信号源取极小量电流的情况下,应该选用场效应管。而在允许取一定量电流时,
选用晶体管进行放大,可以得到比场效应管高的电压放大倍数。

3.场效应管是利用多子导电(多子:电子为多数载流子,简称多子),而晶体管是
既利用多子,又利用少子(空穴为少数载流子,简称少子),由于少子的浓度易受温度
,辐射等外界条件的影响,因此在环境变化比较剧烈的条件下,采用场效应管比较合适


4.功率放大电路是一种弱电系统,具有很高的灵敏度,很容易接受外界和内部一些
无规则信号的影响,也就是在放大器的输入端短路时,输出端仍有一些无规则的电压或
电流变化输出,利用示波器或扬声器就可觉察到。这就是功率放大器的噪声或干扰电压
。噪声所产生的影响常用噪声系数Nf表示,单位为分贝(dB),Nf越小越好,Nf=输入信
号噪声比/输出信号噪声比,晶体管的噪声来源有三种:⑴热噪声:由于载流子不规则的
热运动,通过半导体管内的体电阻时而产生;⑵散粒噪声:通常所说的三极管中的电流
只是一个平均值,实际上通过发射结注入基区的载流子数目,在各个瞬时都不相同,因
而引起发射极电流或集电极电流有一无规则的流动,产生散粒噪声;⑶颤动噪声:晶体
管产生颤动噪声的原因现在还不十分清楚,但被设想为载流子在晶体表面的产生和复合
所引起,因此与半导体材料本身及工艺水平有关。而场效应管的噪声只产生于载流子的
运动,所以场效应管的Nf比晶体管的要小。

  放大器不仅其放大其输入端的噪声,而且,放大器本身也存在噪声,所以其输
出端的信噪比必然小于输入端信噪比,放大器本身噪声越大,它的输出端信噪比就越小
于输入端信噪比,Nf就越大,所以在低噪声放大器的前级通常选用场效应管,或者低噪
声晶体管。

5.场效应管的漏、源极可以互换、耗尽型绝缘栅管的栅极电压可正,可负,灵活性
比晶体管强。不过在音响功率放大器中,场效应管多以N沟/P沟对管出现,晶体管也以PN
P/NPN对管出现。但场效应管在业余应用中较为脆弱,成本也较高。

  从以上场效应管和晶体管的对比中不难发现,场效应管具有输入阻抗高、噪声
低、功耗低、热稳定性高、抗辐射能力强等优点,因此场效应管的总体性能上要优于晶
体管,在许多优秀的功率放大器中,场效应管得到了较为普遍的采用。而采用晶体管的
功率放大器取得靓声者也同样屡见不鲜。工程师根据两种管子的特性,取其各自的优点
,设计出一种组合管,效果嘛,当然比它们好。


晶体管的分类

1.场效应管主要有结型场效应管(jfet)和绝缘栅型场效应管(igfet)。绝缘栅型
场效应管的衬底(b)与源析(s)连在一起,它的三个极分别为栅极(g)、漏极(d)
和源极(s)。晶体管分npn和pnp管,它的三个极分别为基极(b)、集电极(c)、发射
极(e)。场效应管的g、d、s极与晶体管的b、c、e极有相似的功能。绝缘栅型效应管和
结型场效应管的区别在于它们的导电机构和电流控制原理根本不同,结型管是利用耗尽
区的宽度变化来改变导电沟道的宽窄以便控制漏极电流,绝缘栅型场效应管则是用半导
体表面的电场效应、电感应电荷的多少去改变导电沟道来控制电流。它们性质的差异使
结型场效应管往往运用在功放输入级(前级),绝缘栅型场效应管则用在功放末级(输
出级)。
2.双极型晶体管内部电流由两种载流子形成,它是利用电流来控制。场效应管是电
压控制器件,栅极(g)基本上不取电流,而晶体管的基极总要取一定的电流,所以在只
允许从信号源取极小量电流的情况下,应该选用场效应管。而在允许取一定量电流时,
选用晶体管进行放大,可以得到比场效应管高的电压放大倍数。
3.场效应管是利用多子导电(多子:电子为多数载流子,简称多子),而晶体管是
既利用多子,又利用少子(空穴为少数载流子,简称少子),由于少子的浓度易受温度
,辐射等外界条件的影响,因此在环境变化比较剧烈的条件下,采用场效应管比较合适

4.功率放大电路是一种弱电系统,具有很高的灵敏度,很容易接受外界和内部一些
无规则信号的影响,也就是在放大器的输入端短路时,输出端仍有一些无规则的电压或
电流变化输出,利用示波器或扬声器就可觉察到。这就是功率放大器的噪声或干扰电压
。噪声所产生的影响常用噪声系数nf表示,单位为分贝(db),nf越小越好,nf=输入信
号噪声比/输出信号噪声比,晶体管的噪声来源有三种:⑴热噪声:由于载流子不规则的
热运动,通过半导体管内的体电阻时而产生;⑵散粒噪声:通常所说的三极管中的电流
只是一个平均值,实际上通过发射结注入基区的载流子数目,在各个瞬时都不相同,因
而引起发射极电流或集电极电流有一无规则的流动,产生散粒噪声;⑶颤动噪声:晶体
管产生颤动噪声的原因现在还不十分清楚,但被设想为载流子在晶体表面的产生和复合
所引起,因此与半导体材料本身及工艺水平有关。而场效应管的噪声只产生于载流子的
运动,所以场效应管的nf比晶体管的要小。
??放大器不仅其放大其输入端的噪声,而且,放大器本身也存在噪声,所以其输
出端的信噪比必然小于输入端信噪比,放大器本身噪声越大,它的输出端信噪比就越小
于输入端信噪比,nf就越大,所以在低噪声放大器的前级通常选用场效应管,或者低噪
声晶体管。
5.场效应管的漏、源极可以互换、耗尽型绝缘栅管的栅极电压可正,可负,灵活性
比晶体管强。不过在音响功率放大器中,场效应管多以n沟/p沟对管出现,晶体管也以pn
p/npn对管出现。但场效应管在业余应用中较为脆弱,成本也较高。
??从以上场效应管和晶体管的对比中不难发现,场效应管具有输入阻抗高、噪声
低、功耗低、热稳定性高、抗辐射能力强等优点,因此场效应管的总体性能上要优于晶
体管,在许多优秀的功率放大器中,场效应管得到了较为普遍的采用。而采用晶体管的
功率放大器取得靓声者也同样屡见不鲜。工程师根据两种管子的特性,取其各自的优点
,设计出一种组合管,效果嘛,当然比它们好。


晶体管有哪些基本类型?

晶体管按制造材料分有硅晶体管和锗晶体管,
按结构分有PNP三极管和NPN三极管
按频率分有高频三极管和低频三极管
按功率分有小功率管(PVM小于1W)和大功率管
按种类分有光电管,发光管,场效应管,变容管,单结晶体管,微波管,整流管,稳压管等
按电极数分二极管,三极管,
按封装可分金属壳管和塑封管


收到2268个赞
晶体管-晶体管
什么是晶体管?1946年1月,贝尔(Bell)实验室成立了固体物理研究小组及冶金研究小组,并设计出了第一个晶体管,即在一个楔形的绝缘体上蒸
功放机原理-功放机原理,功放机,原理
PUK音响的工作原理是什么?工作原理其实很简单,直观来说就是将音源播放的各种声音信号进行放大以推动音箱发出声音。从技术角度看,功放好
参考文献标注-参考文献标注,参考文献,标注
论文中的参考文献该如何加在文章中做标注呢?1. 光标移到要插入参考文献的地方,菜单中“插入”“引用”-“脚注和尾注”。 2.对话框中
辉瑞制药-辉瑞制药
在武汉光谷国际企业中心上班,请问在哪里租房比较合适光谷国际后面那个小区还不错,不过这附近没有600-700的地方,就连中航181那的单间都是
分子生物学-分子生物学
分子生物学指的是什么?分子生物学是指在分子水平上研究生命现象的科学,从生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面来阐明各